From Wikipedia, the free encyclopedia
Graded vector space equipped with a bilinear operator
In mathematics, an anyonic Lie algebra is a U(1) graded vector space
over
equipped with a bilinear operator
and linear maps
(some authors use
) and
such that
, satisfying following axioms:[1]
![{\displaystyle \varepsilon ([X,Y])=\varepsilon (X)\varepsilon (Y)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33b25ef2e3af7983c3beed9d9b88fa0c14789d05)
![{\displaystyle [X,Y]_{i}\otimes [X,Y]^{i}=[X_{i},Y_{j}]\otimes [X^{i},Y^{j}]e^{{\frac {2\pi i}{n}}\varepsilon (X^{i})\varepsilon (Y_{j})}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f228e7639ea84dd13b09a4a21e1d0152b2c917a5)
![{\displaystyle X_{i}\otimes [X^{i},Y]=X^{i}\otimes [X_{i},Y]e^{{\frac {2\pi i}{n}}\varepsilon (X_{i})(2\varepsilon (Y)+\varepsilon (X^{i}))}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93a03a14d20cd62723ceab0f8349db7fc870a5e3)
![{\displaystyle [X,[Y,Z]]=[[X_{i},Y],[X^{i},Z]]e^{{\frac {2\pi i}{n}}\varepsilon (Y)\varepsilon (X^{i})}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db9bd3cb954e2ad56e2051410a6ae9ba4d0cb35c)
for pure graded elements X, Y, and Z.